On the size of maximum renamable Horn sub-CNF

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Renamable Horn sub-CNFs

The NP-hard problem of finding the largest renamable Horn sub-CNF of a given CNF is considered, and a polynomial time approximation algorithm is presented for this problem. It is shown that for cubic CNFs this algorithm has a guaranteed performance ratio of 40 67 .

متن کامل

On 2-SAT and Renamable Horn

We introduce new linear time algorithms for satisfiability of binary propositional theories (2-SAT), and for recognition and satisfiability of renamable Horn theories. The algorithms are based on unit resolution, and are thus likely easier to integrate within general SAT solvers than other graph-based algorithms.

متن کامل

A Modular Reduction of Regular Logic to Classical Logic

In this paper we first define a reduction Æ that transforms an instance of Regular-SAT into a satisfiability equivalent instance Æ of SAT. The reduction Æ has interesting properties: (i) the size of Æ is linear in the size of , (ii) Æ transforms regular Horn formulas into Horn formulas, and (iii) Æ transforms regular 2-CNF formulas into 2-CNF formulas. Second, we describe a new satisfiability t...

متن کامل

Recognizing Renamable Generalized Propositional Horn Formulas Is NP-complete

Yamasaki and Doshita have defined an extension of the class of propositional Horn formulas; later, Gallo and Scutellà generalized this class to a hierarchy Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . ., where Γ0 is the set of Horn formulas and Γ1 is the class of Yamasaki and Doshita. For any fixed k, the propositional formulas in Γk can be recognized in polynomial time, and the satisfiability problem for Γk for...

متن کامل

A Branching Heuristics for Quantified Renamable Horn Formulas

Many solvers have been designed for QBFs, the validity problem for Quantified Boolean Formulas for the past few years. In this paper, we describe a new branching heuristics whose purpose is to promote renamable Horn formulas. This heuristics is based on Hébrard’s algorithm for the recognition of such formulas. We present some experimental results obtained by our qbf solver Qbfl with the new bra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2005

ISSN: 0166-218X

DOI: 10.1016/j.dam.2004.05.007